Active and passive movement are encoded equally by head direction cells in the anterodorsal thalamus.

نویسندگان

  • Michael E Shinder
  • Jeffrey S Taube
چکیده

The head direction (HD) system is composed of cells that represent the direction in which the animal's head is facing. Each HD cell responds optimally when the head is pointing in a particular, or preferred, direction. Although vestibular system input is necessary to generate the directional signal, motor/proprioceptive inputs can also influence HD cell responses. Previous studies comparing active and passive movement have reported significant suppression of the HD signal during passive restraint. However, in each of these studies there was considerable variability across cells, and the animal's head was never completely fixed. To address these issues, we developed a passive restraint system that more fully prevented head and body movement. HD cell responses in the anterodorsal thalamus (ADN) were evaluated during active and passive movement with this new system. Contrary to previous reports, HD cell responses were not affected by passive restraint. Both head-fixed and hand-held restraint failed to produce significant inhibition of the active HD cell response. Furthermore, direction-specific firing was maintained regardless of 1) the animal's previous experience with restraint, 2) whether it was tested in the light or dark, or 3) the position of the animal relative to the axis of rotation. The maintenance of a stable directional signal without appropriate motor, proprioceptive, or visual input indicates that vestibular input is necessary and sufficient for the generation of the HD signal. Motor and proprioceptive influences may therefore be important for the control of the preferred firing direction of HD cells, but not the generation of the signal itself.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peak firing rates of rat anterodorsal thalamic head direction cells are higher during faster passive rotations.

Head direction cells discharge selectively when the head of the animal is oriented in a specific direction. The goal of this study was to determine how sensory signals arising from passive rotations (e.g., triggered by vestibular stimulation and dynamic visual inputs) influence the responses of anterodorsal thalamic head direction cells in the absence of voluntary movement cues (e.g., motor com...

متن کامل

Single-cell persistent activity in anterodorsal thalamus.

The anterodorsal nucleus of the thalamus contains a high percentage of head-direction cells whose activities are correlated with an animal's directional heading in the horizontal plane. The firing of head-direction cells could involve self-sustaining reverberating activity in a recurrent network, but the thalamus by itself lacks strong excitatory recurrent synaptic connections to sustain tonic ...

متن کامل

Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction.

Several regions in the rat brain contain neurons known as head-direction cells, which fire only when the rat's head is facing in a specific direction. Head-direction cells are influenced only by the direction of the head with respect to the static environmental surroundings, and not by the position of the head relative to the body. Each head-direction cell has its own preferred direction of fir...

متن کامل

Active locomotion increases peak firing rates of anterodorsal thalamic head direction cells.

Head direction (HD) cells discharge selectively in macaques, rats, and mice when they orient their head in a specific ("preferred") direction. Preferred directions are influenced by visual cues as well as idiothetic self-motion cues derived from vestibular, proprioceptive, motor efferent copy, and command signals. To distinguish the relative importance of active locomotor signals, we compared H...

متن کامل

Updating of the spatial reference frame of head direction cells in response to locomotion in the vertical plane.

Many species navigate in three dimensions and are required to maintain accurate orientation while moving in an Earth vertical plane. Here we explored how head direction (HD) cells in the rat anterodorsal thalamus responded when rats locomoted along a 360° spiral track that was positioned vertically within the room at the N, S, E, or W location. Animals were introduced into the vertical plane ei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 106 2  شماره 

صفحات  -

تاریخ انتشار 2011